
5 Testing

Testing is an extremely important component of most projects, whether it involves a circuit, a process,
power system, or software.

The testing plan should connect the requirements and the design to the adopted test strategy and
instruments. In this overarching introduction, given an overview of the testing strategy and your team’s
overall testing philosophy. Emphasize any unique challenges to testing for your system/design.

In the sections below, describe specific methods for testing. You may include additional types of testing, if
applicable to your design. If a particular type of testing is not applicable to your project, you must justify
why you are not including it.

When writing your testing planning consider a few guidelines:

● Is our testing plan unique to our project? (It should be)
● Are you testing related to all requirements? For requirements you’re not testing (e.g., cost related

requirements) can you justify their exclusion?
● Is your testing plan comprehensive?
● When should you be testing? (In most cases, it’s early and often, not at the end of the project)

In this section we discuss our plan for conducting various testing procedures to validate the implementation
of the project. We note that the requirements (functional and non-functional) were already translated into
the architectural components discussed in Section 3 of this document, and we refer to corresponding figures
from that section here.

Given that the project involves large (simulation based) datasets, along with execution of algoritms and
visualization of the output, there are certain distinct characteristics of our testing.

We note that the main objective of this project is to develop a proof-of-concept implementation, not a
complete commercially available prototype. As such, the cost component is not a major testing factor.

5.1 Unit Testing (Rowan Collins)

There are a handful of aspects in our proposed design that require unit testing to ensure correct
functionality of all systems. Unit testing is essential to scale functionality of our project. We will be testing
in parallel with new code development. Below is listed our proposed ideas for unit testing:

● We need to ensure consistent algorithm output. By running JUnit tests on an algorithm given
specific parameters, we can ensure that output is always in our generalized file format. While we
can’t test the output, as algorithms being used may vary, we can test that an output file is formatted
correctly.

● We need to make sure the system can detect a simulation with parameters that have already been
run by running JUnit tests to grab data from an output file and make sure it matches with preset
parameters.

● Our frontend system needs to function properly and translate the proper data to the server for
drone visualization. In order to ensure correct functionality we need to ensure:

○ parameters are passed as selected by the client

○ the account responsible for creating the request is passed with the parameters

● Our notification system needs to function properly in order to notify the correct users that the
simulation data is up. In order to verify the functionality we will need to make sure that:

○ the notification system correctly identifies the user who submitted the request

○ the notification email contains the formatted file attatched

● Our user registration system will need to be tested in order to be certain that duplicate users cannot
be created.

While this list isn’t completed, it’s an outline for what’s to come. Unit testing will be vital in order to provide
a functioning and reliable system, so new items will be added in the future. To provide a scalable system our
group will aim for near perfect line and case coverage of our application. Test input will be small in
comparison when compared to data being computed in production. Using small sample sizes when testing
will help us predict with higher accuracy when unit testing.

Tools: JUnit, Mockito

5.2 Interface Testing (Joe)

To communicate within the application, the following interfaces are defined: simulation setup, simulation
parsing, and algorithm notification. The simulation setup interface interprets information from the frontend
and creates a simulation. The simulation parsing interface converts JSON into objects to display on screen.
And finally, the notification system alerts the frontend on the status of simulations.

Testing user selection of simulation setup with backend:

To test the simulation setup interface:

● Sample JSON files given to the interface and results will be compared to other known results of the
algorithm.

● Invalid arguments will be given to the interface to ensure the interface rejects invalid data.

To test simulation parsing interface:

● Partial simulation results in the form of JSON objects will be passed to the interface to display,
verify that each drones, locations, and phenomena display individually.

● Complete JSON files will also be passed to the interface to verify that all objects are able to display
at once.

To test the notification interface:

● Sample notifications will be created and passed to the interface which the frontend must display.

None of the success of each the setup, parsing, and notification interfacing test shall depend on each other,
and thus each may be developed and verified in parallel. This also supports the Agile methodology by
further compartmentalizing functionality.

Tools: Jest, Mockito, JUnit

5.3 Integration Testing (Jacob Houts)

There are a couple critical integration paths that need to be tested. The first path is between springboot and
the database, and the second path is between springboot and the React frontend. These paths are critical
because we pass algorithm information, simulation information and user information between these paths.
The data is sent along these paths by using the REST API that we are implementing using springboot. These
API Calls need to be tested to ensure correctness and efficiency. Our primary way of testing these API calls
will be to send specific data to a known location, then ensuring that this data arrives at said location
unmodified. These tests will be conducted with input data on a smaller scale then production data.

Examples:

● Test that we can send a user inputted algorithm and store it on the database.
● Test that simulation information gets processed to the frontend correctly.
● Test that the notification system on the front end works when the notification is triggered in

springboot.

Tools: Mockito, Postman

Many of these tests will be conducted in parallel to in order to reduce the amount of time and resources this
testing will take. This also is in accordance with Agile methodology, which we are using for our development
strategy.

5.4 System Testing (Jacob Houts)

For system testing we will use the functional requirements as criteria. Refer to section 2.1.1 of this document.
Key requirements that need system testing.

● The software shall provide a visualization of the drone flight.
○ The software shall have a 2d grid layout of the geographical area.

● The software shall save previously run simulations for input combinations that will be accessible for
other users.

● The software shall allow the user to login to a personal account profile.
● etc.

Each of these requirements require the entire system to be operational in order to test. These tests will be
conducted using a combination of unit, interface, and integration tests. In order for these tests to be
deemed successful, they need to finish with the correct result, within a timely manner, without using too
many resources.

The tools used throughout this process may include (but are not limited to):
Postman, Mockito, Jtest, Junit.

5.5 Regression Testing (Jaden Forde)

How are you ensuring that any new additions do not break the old functionality? What implemented
critical features do you need to ensure they do not break? Is it driven by requirements? Tools?

Regardless of any changes that are made to the application, it is vital that the web interface remains
accessible online. Of course we also need to ensure that the simulation is accessible and functional, and any
other functionality should remain unless it is intended to be removed by the update.

We will manage this principally by developing tests for components as part of their development. This is an
important part of our agile approach to this project’s development, and will allow us to ensure all desired
functionality is present before anything reaches deployment. For example, if I was creating a component to
import new drone algorithms, I would also write unit and integration tests to demonstrate proper operation
before any code is reviewed. Similarly, if I was updating a component, I would need to write new tests
showing the new functionality. For these tests to be meaningful, they must of course completely
demonstrate the behavior our application should exhibit.

These tests will remain, and each test set will verify proper operation of their respective components.
Therefore before any new changes and tests are deployed, all existing unit, integration, and system tests
must be run to ensure that existing functionality is retained.

These tests will run via our CI/CD pipeline once code is pushed to our remote version control system.

These tests should also be run when non code changes are made, such as the addition of new algorithms
and phenomena.

5.6 Acceptance Testing

How will you demonstrate that the design requirements, both functional and non-functional are being
met? How would you involve your client in the acceptance testing?

Functional Requirements:

- The software shall give the user the ability to choose which phenomena (e.g. fire, explosion, …) to
apply to the drone flight simulation.

- Acceptance criteria: User is able to select a file to be used to describe the event
phenomena.

- The software shall give the user the ability to choose which drone algorithm(s) to apply to the
drone flight simulation.

- Acceptance criteria: User is able to select a file to be used for the fleet algorithm.
- The software shall accept input combinations through selected files.

- Acceptance criteria: User selected files are used in the running of the simulation.
- The software shall provide a visualization of the drone flight.

- Acceptance criteria: The software shall have a 2d grid layout of the geographical
area. There should be identifiable icons for the drones and the events across a
timeline of running.

- The software shall calculate drone statistics and values over time and record them to storage.
- Acceptance criteria: Output of running the simulation should have drone statics in

it’s output file. The output file should be stored in a location to be retrieved at a
later data (ie database).

- The software shall provide a view of statistics around the drones (battery life, location, speed, etc).
- Acceptance criteria: Battery life, location, speed and other client specified data

points (to be documented) should be in the output file of the simulation.

- The software shall save previously run simulations for input combinations that will be accessible for
other users.

- Acceptance criteria: Output file should be stored in a database.
- If the user selects an input combination that has been simulated before then the software shall

return back the already run simulation data.
- Acceptance criteria: Repeated input combinations should retrieve previously run

simulation output files, instead of re-running the simulation. ie Repeat input
should not result in a new simulation output file in the database.

- If the user selects an input combination that has not been simulated previously then the software
shall queue the simulation to be run on the backend.

- Acceptance criteria: New input combinations should result in another output
simulation file in the database.

- If a simulation is run from a queued input combination then the software shall notify the
requesting user when the simulation is completed (push-based notification).

- Acceptance criteria: For new input combinations, the user should receive a
notification (via the webpage or possibly email), after the simulation is run.

- The software shall accept user input (file) which is given in source code which is ready to run
(compiled or interpreted, etc).

- Acceptance criteria: Python files should be accepted as valid algorithm files.
- The software shall store the simulation output in a format containing: starting location, starting

time, destination location, arrival time, trajectory.
- Acceptance criteria: The output simulation file should have starting location,

starting time, destination location, arrival time, and trajectory.
- The software shall have 3 UI components: list of algorithms to pick, list of event phenomena input,

visualization screen of simulation output.
- Possibly a 4th component for notifications.
- Acceptance criteria: Self-evident.

-

Non-Functional Requirements:

- The software should be easy to use and understandable since not all of our users have a technical
background

- Acceptance criteria: A new user, given an example event phenomena file and
algorithm file, should be able to run a simulation and view the results within 30
min of being introduced to the website.

- UI elements of the software shall be intuitive and clearly labeled or documented.
- Acceptance criteria: A new user should be able to correctly identify the purpose of

each UI element (buttons, drop-downs, etc), within 30 min of being introduced to
the website.

- The software shall handle errors in the input gracefully.
- Acceptance criteria: For a selected file that is not correctly formatted for it’s selected

use, there should be a red colored warning message about the selected file being
invalid, and a short description for the reason behind the error.

- The software shall combine concurrent access for already executed input combinations and will run
push notifications for users with new input simulations.

- Acceptance criteria: The user should be able to see and select the result of
previously run simulations.

- The software shall be compatible with Windows, MacOS, and Linux.
- Acceptance criteria: A user on all 3 types of machines should be able to access and

operate the website.
- The software shall be developed in a manner that is supportable & maintainable after our team

leaves.
- Acceptance criteria: Each function, and non-self-evident piece of code, shall have a

single/multi-line comment to explain it’s purpose. The software should be
developed in a manner that allows for modularity and the possibility of adding
additional features.

5.7 Security Testing (if applicable)

Despite security not being implicitly stated in our project description, we feel it is our responsibility to
uphold a certain level of scrutiny when it comes to protecting sensitive data. Since users of our app will be
giving us usernames, emails, and a password we have a duty to make sure this information is not shared
with unintended audiences. We will ensure the safety of our users by using the latest encryption
techniques, such as AES,to secure passwords and other sensitive information.

Asking for help from other security oriented students, and our own team, to scan for vulnerabilities in our
database or possible flaws in our web application would be beneficial. However, since security is not a
primary concern of our project, we believe no detailed plans for security testing would be necessary for the
scope of our design.

- The software shall allow the user to login to a personal account profile. (Functional requirement)
- Acceptance criteria: User with credentials is able to login.

5.8 Results

What are the results of your testing? How do they ensure compliance with the requirements? Include
figures and tables to explain your testing process better. A summary narrative concluding that your design is
as intended is useful.

At this point we do not have a product to test against.

